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A numerical method is developed for nonlinear three-dimensional but axisymmetric 
free-surface problems using a mixed Eulerian-Lagrangian pcheme under the assump- 
tion of potential flow. Taking advantage of axisymmetry, Rankine ring sources are 
used in a Green’s theorem boundary-integral formulation to solve the field equation ; 
and the free surface is then updated in time following Lagrangian points. A special 
treatment of the free surface and body intersection points is generalized to this case 
which avoids the difficulties associated with the singularity there. To allow for 
long-time simulations, the nonlinear computational domain is matched to a transient 
linear wavefield outside. When the matching boundary is placed at  a suitable distance 
(depending on wave amplitude), numerical simulations can, in principle, be continued 
indefinitely in time. Based on a simple stability argument, a regriding algorithm 
similar to that of Fink & Soh (1974) for vortex sheets is generalized to free-surface 
flows, which removes the instabilities experienced by earlier investigators and 
eliminates the need for artificial smoothing. The resulting scheme is very robust and 
stable. 

For illustration, three computational examples are presented: (i) the growth and 
collapse of a vapour cavity near the free surface; (ii) the heaving of a floating vertical 
cylinder starting from rest; and (iii) the heaving of an inverted vertical cone. For the 
cavity problem, there is excellent agreement with available experiments. For the 
wave-body interaction calculations, we are able to obtain and analyse steady-state 
(limit-cycle) results for the force and flow field in the vicinity of the body. 

1. Introduction 
Ever since the work of Longuet-Higgins & Cokelet (1976), the mixed Eulerian- 

Lagrangian method has been used efficaciously for a variety of nonlinear free-surface 
problems in two dimensions. The algorithm requires two steps: at any instant of time, 
the field equation is solved in an Eulerian frame, after which Lagrangian points are 
followed on the free surface to update their positions and potential values. The first 
step is typically accomplished by writing a boundary-integral equation for the 
velocity potential, and the second by high-order finite-difference time integrators. 

Assuming periodic waves, Longuet-Higgins & Cokelet (1976) were able to simulate 
propagating steep Stokes’ waves, as well as realistic overturning and plunging of the 
wave crest when an asymmetric surface pressure was applied. Faltinsen (1977) 
applied a similar method to study the nonlinear waves outside and inside moving 
bodies. For the former, periodic boundary conditions were replaced in favour of 
matching to a Rankine (non-wave) potential in the far field. Vinje & Brevig (1981) 
extended the approach of Longuet-Higgins & Cokelet to include finite water depth 
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and floating bodies but retained the assumption of spatial periodicity. By applying 
Cauchy’s integral theorem to the complex potential they were able to obtain 
Fredholm integral equations of the second kind for both the stream function on the 
free surface and the potential on the body, resulting in a substantial gain in efficiency 
and accuracy of the equation system. The same idea was exploited by Baker, Meiron 
& Orszag (1982) who used a dipole distribution on the free-surface (where Dirichlet 
conditions are posed), and the resulting Fredholm equations of the second kind were 
solved using an iterative method. Unlike the complex-potential formulation of Vinje 
& Brevig, this approach can, in principle, be extended directly to three-dimensional 
problems. 

In  this paper, we extend the semi-Lagrangian method to vertically axisymmetric 
free-surface flows. Our ultimate (but ambitious) objective is to be able to simulate 
fully three-dimensional nonlinear interactions between a free-surface and a body. A 
number of important difficulties remain to be resolved before such a goal can 
realistically be reached (see $5) .  In  the present context of axisymmetric problems, 
we are able to address and satisfactorily solve three of the main outstanding 
problems: (i) implementation of a far-field closure; (ii) treatment of the body and 
free-surface intersection line; and (iii) stable representation and time integration of 
the free surface. In  addition, through a number of computational examples, the 
usefulness and accuracy of the mixed Eulerian-Lagrangian approach to problems in 
more than two dimensions is demonstrated. This research paves the way for 
numerical study of nonlinear three-dimensional diffraction and radiation problems 
of scientific and engineering importance. 

1.1. Far-jield closure 
A satisfactory treatment of the far-field condition is essential to the study of ex- 
terior-wave-motion problems. When the physical problem possesses spatial period- 
icity, such a difficulty is easily resolved by using periodic boundary cgnditions (e.g. 
Longuet-Higgins & Cokelet 1976). The computation domain is folded unto itself and 
the exterior (periodic) boundaries are simply eliminated. When an isolated body is 
present in an unbounded region, the assumptions of spatial periodicity or of fixed 
boundaries at some distance are clearly unrealistic. Nevertheless, by keeping & 

relatively large domain, Vinje & Brevig (1981), Greenhow et al. (1982) and others were 
able to use periodic conditions to study the dynamics of a floating body. 

Faltinsen (1977) in his study of the heaving motion of a two-dimensional floating 
body, matched his nonlinear inner solution to that of a Rankine dipole in the far field. 
Since wave effects are not present in the latter, Faltinsen found that unless the 
interior computational domain was increased as a function of simulation time, the 
computations would soon break down. Assuming a boundary-integral formulation 
for the nonlinear interior domain with N free-surface points, N must increase 
approximately linearly with time T for both of the above approaches with the 
associated O ( P )  and O(N9) increases in storage and computational effort per 
time-step (assuming a direct solution) respectively. For this reason, the cost may 
become prohibitive even for two-dimensional problems, and Faltinsen’s results, for 
example, were typically restricted to less than one oscillation period. The situation 
is even more critical for three-dimensional problems with the anticipated O(T2, T4, TB) 
increase respectively in unknowns N, storage, and number of operations per 
time-step. Thus, in Isaacson’s (1982) Eulerian calculation of the nonlinear diffraction 
by a vertical cylinder, where the fluid velocities were assumed to be zero on a finite 
truncation boundary, motion for only a fraction of a wave period could be simulated. 
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In  this work, we pose a far-field closure by matching the nonlinear computational 
solution to a general linear solution of transient outgoing radiated waves. The 
determination of the linear wavefield as well as specification of the boundary 
condition for the nonlinear interior problem are obtained through a matching of the 
two on a fictitious boundary some distance away. Such a scheme is, in principle, 
untenable in two-dimensional flows since the nonlinearity of the radiated waves 
persists into the far field, and a simple matching to linear outer solutions is 
problematic (e.g. Vinje, Maogang & Brevig 1982). In  three dimensions, however, the 
energy density of the radiating waves must necessarily decrease with radial distance 
so that a matching to a general linear solution is in theory valid at least some distance 
away. Indeed, for a suitably fixed matching radius (based for example only on motion 
amplitude) nonlinear simulations can in principle be carried out indefinitely in time. 
This is confirmed by our numerical experiments where we are able to continue the 
computations until steady-state conditions are reached for the entire inner compu- 
tation domain (see $4). 

1.2. Body and free-surface intersection line 
A confluence of boundary conditions exists at the intersection of the free surface and 
a body moving in it. As a result, the solution exhibits a weak singularity at that point. 
According to linear theory, the velocity potential for a vertical wall moving 
horizontally is logarithmically singular at the contact point (Kravtchenko 1954), and 
a similar singularity is also present for general three-dimensional flows (Miloh 1980). 
This singularity persists even when full nonlinearity is introduced. For example, for 
a vertical two-dimensional piston moving in a water depth h, D. H. Peregrine (1972, 
unpublished notes) derived a perturbation result where the surface elevation 
displayed a t log (tanh (ns/4h)) behaviour for small time t ,  where z is the horizontal 
coordinate measured from the wavemaker. This two-dimensional result has been 
confirmed by a number of other investigations using both Eulerian and Lagrangian 
analyses as well as by experiments, and are reviewed in Greenhow & Lin (1983) and 
Lin (1984). Computationally, this weak singularity along the intersection line has a 
global influence and numerical difficulties for the nonlinear problem can be expected 
there. In Vinje & Brevig (1981), the intersection point was treated as part of the body 
boundary where a kinematic condition but not the free-surface conditions were 
prescribed, and the position and potential at that point were subsequently obtained 
via extrapolation. The results using this approach were not completely satisfactory, 
and in a later work by Greenhow et al. (1982) using the same method, they found 
it necessary to use experimental measurements to fix the intersection-point locations 
in their computations to produce acceptable results. 

For two-dimensional problems, Lin (1984) developed a novel approach where, by 
specifying both the stream function and the velocity potential at the intersection 
point in the Cauchy integral-equation solution, the computational difficulties there 
were, in practice, avoided. In this paper, we adopt a similar idea for the axisymmetric 
problem where the field equation is solved in terms of the velocity potential and its 
normal derivative. The resulting scheme is robust and effective as demonstrated, for 
example, by our computations of a heaving inverted cone (see $4). 

1.3. Stability of the free surface 
In the original work of Longuet-Higgins & Cokelet (1976), a ‘sawtooth’ instability 
of the free surface was encountered and a smoothing technique was employed to 
suppress its development. Since then similar smoothing methods have been found 
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necessary by many investigators especially when the local steepness of the waves is 
large. It is now believed that such high-wavenumber instabilities are non-physical 
and are closely related to the accuracy of the velocity calculations for the free-surface 
particles. The exact mechanism of the instability is, however, quite subtle and may 
well depend on the details of a particular implementation. In Vinje & Brevig (1981)’s 
computations using Cauchy’s integral formula, no such instability was observed, 
although using essentially similar schemes Baker et al. (1982) and Lin, Newman & 
Yue (1984) both required a smoothing operator to suppress instabilities when the 
waves were steep. On the other hand, when a dipole (rather than vortex) distribution 
was used in Baker et al. the instability was found to be greatly reduced. Roberts 
(1983) analysed this problem using Fourier spectral representations for the position 
and potential of a free-shear layer and was able to remove the numerical instability 
by a simple modification of the highest (even) Fourier mode. Dold & Peregrine (1986) 
extended the idea of Vinje & Brevig (1981) by calculating also the higher time 
derivatives of the complex potential in the Eulerian step. The resulting time 
integration scheme had an improved accuracy but more importantly showed only 
minor short-wavelength instabilities which were easily controlled, without resorting 
to smoothing, by decreasing the time-step size. Such a scheme is somewhat analogous 
to a modified Runge-Kutta integration where new values of the potential but not 
the free-surface positions are used in the intermediate steps of the integration (see 
$3). 

We postulate (see $3) that a root cause of the high-wavenumber instability is the 
concentration of Lagrangian markers in the region of higher gradients, so that for 
a fixed time-step a local Courant condition is inevitably violated as the wave steepens 
(as evident, for example, in the numerical experiments of Dold & Peregrine 1986, $6). 
Thus, we develop a regriding algorithm wherein a new set of equally spaced (in 
arclength) Lagrangian points on the free surface are created after every time-step. 
Such an idea is not new and is not unlike, for example, that used by Fink & Soh (1974) 
in their simulation of thin vortex sheets. Our numerical experiments indicate that 
the regriding method is extremely effective and eliminates the instabilities without 
the use of artifiial smoothing. Although regriding effectively acts as a nonlinear 
smoothing process to suppress instabilities (Moore 1981), as explained in $3 a 
regriding approach has important advantages over the traditional smoothing tech- 
niques especially in conjunction with a careful treatment of the free surface and body 
intersection line. 

2. Mathematical formulation 
We consider the irrotational flow of an incompressible, inviscid fluid with a free 

surface. The flow can be described by a velocity potential 4(x, t )  and the fluid velocity 
is given by t, = V4. Inside the fluid volume V ( t ) ,  4 satisfies Laplace’s equation 

V24 = 0 in V ( t ) .  (2.1) 
On the free surface F(x, t), 4 satisfies the kinematic boundary condition 

and the dynamic boundary condition (assuming zero atmospheric pressure) 

- -gsz+$IV4l2 on F(x, t ) ,  -- D4 
Dt 

( 2 . 2 ~ )  

(2.2b) 
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where g is the acceleration due to gravity, the vertical coordinate z is positive up, 
and z = 0 is the undisturbed water surface. On the body surface B(x,  t ) ,  the normal 
velocity is continuous, 

(2.3) 

where n is the unit normal pointing out of the fluid and n the coordinate along n. 
On a stationary horizontal bottom B, at z = -h, (2.3) is satisfied there with U = 0. 
In addition, we specify zero initial conditions and a suitable far-field condition 

a+ V+*n(x,  t )  = - = U(x ,  t )  prescribed, on B(x,  t ) ,  an 

+ + O  asIxl+co, t < m .  (2.4) 

We further establish a vertical circular cylindrical matching surface So, of a fixed 
radius A, enclosing B. From (2.1), we have from Green’s identity 

where R = Ix -x’I, S(t)  = B U Eo U F U So, the overbar denotes that portion of the 
surface enclosed by So, a is the included solid angle at  x, and the exclusion of the 
singular point x from the integral is always implied. 

For axisymmetric bodies and motion, and assuming that the radiated waves are 
circumferentially stable, it follows from (2.3) that + and F are also independent of 
the angular coordinate 0 and (2.5) can be integrated in 0 to give 

The line integral is along the trace &S’(t) = aB u u @ u as, of S on (r, z).  G is the 
Rankine ring source given by 

G(r , z , ;  r’,z’) = j o 2 ‘ Z = - K ( l - $ ) ,  4 

P1 
(2.7 1 

wherep2 = ( z - ~ ’ ) ~ + ( r - r ’ ) ~ ,  andp: = ( z - ~ ’ ) ~ + ( r + r ’ ) ~ a n d K i s  the completeelliptic 
integral of the first kind (Abramowitz t Stegun 1964). As p+O, Kis logarithmically 
singular, so that G behaves like a two-dimensional source there. To reduce the number 
of unknowns, it is convenient in practice to remove the bottom aE0 from as in 
(2.6) by augmenting G ( r , z ;  r’,z’) with its image source with respect to 
z = - h :  G ( r , z ;  r‘, -2’-2h). 

For a particular aS(t), (2.6) is a Fredholm integral equation of the first kind for 
+n on @ (where Dirichlet conditions are posed), and of the second kind for + on aB. 
On the outer surface as,, however, neither 9 nor a$/& are in principle known, and 
we shall obtain a closure by matching (patching) them to a general linearized solution 
$ outside So which satisfies 

V 2 $ = 0 ,  r > A ,  - h < z < O ,  ( 2 . 8 ~ )  

and initial conditions 

( g + g $ ) $ = O ,  r > A ,  z = O ,  

_ -  ”-0 ,  r > A ,  z=-h ,  
an 

r >  A ,  2 = 0, t = 0. 

(2.8b) 

( 2 . 8 ~ )  

(2.8d) 

(2.8e) 
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Details of the solution for 6 are given in the Appendix. The important result is that 
the transient history of the potential 6 and the normal derivative 6, of any linear 
wavefield outside a closed surface So can be directly related when evaluated on So. 
Thus we can write in general 

where H is a known operator (depending only on So) which accounts for both the 
impulsive motion of the fluid and the memory effect of the free surface outside So. 
Typically, H involves integration over the surface So as well as a convolution of the 
operand for the memory effects (see Appendix). For a circular cylindrical So (radius 
A, depth h),  for example, the form of (2.9) is given by (A 8). Equation (2.9) now 
provides the closure for q5 on So upon imposing the matching conditions 

$Iso = H6nIso’ (2.9) 

4 = $ 9  @ n  = Bn,  onso.  (2.10) 

Implicit in (2.10) is the assumption that So is sufficiently large that the nonlinear 
radiated waves can be matched to a linear field without appreciable errors or 
reflection. The validity of this matching scheme must finally be demonstrated by, 
say, comparing results obtained using different values of the matching radii A for 
So. Substituting (2.9) into (2.6) using (2.10) we finally obtain 

(2.11) 

Following a semi-Lagrangian approach, we have at a given time, the position of 
the body aB(t) and the normal derivative q5 on i t  given from the body boundary 
condition (2.3); the position @ ( t )  and 4 on k’ from time integration of (2.2); and 
a history of all previous values of 9,. on as,. Equation (2.11) can then be solved for 
9 on aB, q5n (and hence Vq5) on i%’ and (the present value of) q5r on as,. The process 
is then repeated for successive time-steps. We remark here that the linear wavefield 
6 is completely general subject to (2.8) and appears in the formulation only through 
the function H in (2.11). 

3. Numerical implementation 
3.1. Solution of the field equation 

To discretize (2.11), we (a) subdivide as into a number of small segments as,, 
j = 1,2, . . . , J; ( a )  represent the boundary values of 4 and q5, by local basis functions; 
and (c) collocate (2.11) at selected points on 38. Since (2.11) represents mixed 
Fredholm integral equations of the first and second kind, the final linear algebraic 
system is solved using direct Gaussian elimination. An important consideration here 
is the treatment of the intersection point between aF and aB (and also between a 7  
and as,) because of the anticipated weak singularity there. To avoid numerical 
difficulties at the intersection points, we follow the idea of Lin (1984) for the 
two-dimensional problem and seek to satisfy both the free-surface and body 
boundary conditions at the intersection. The most direct extension of the idea is to 
prescribe both q5 from the condition on @ and q5, from the body boundary condition 
at that point, i.e. at @ n aB, we specify both 6, on aB and 4, and solve for q5n on 
a7. This requires that the end points of the segments be specified as collocation points 
and that the approximation for q5 be continuous across these points. We adopt the 
simplest choice of piecewise linear variations of (q5,q5n) along each segment, prescribed 
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by their values, (&, #n,),j = 1 ,2 ,  . . . , J+ 1, at the segment end points. For consistency 
in approximation, and also to satisfy the need for continuous normal derivatives 4, 
on aPwhere Dirichlet conditions are specified, we require that as be at least piecewise 
quadratic with continuous slopes across segment boundaries. To avoid the degeneracy 
of quadratic splines, the portions of i3S(aB, 37, as,) are approximated by cubic splines 
with prescribed slopes at the ends of each curve. 

Thus within a particular segment j, &f and fl? are linear functions of arc-length 8 ,  

(3.1) 

where f = s /L ,  and s, L are respectively the arclength and total length of the segment 

( 3 . 2 ~ )  

(3.2b) 

r$,(n, 4n,(f)1 = (1 - 5) [4,, $%&,I + E[$,+,, 4,,+lI, 

given by 6 
4s) = 1, J(C)dC, 0 < f <  1, 

and J is the Jacobian 

( 3 . 2 ~ )  

which are all functions of the cubic spline parameter f, 0 < f < 1, for that segment. 
The difference between using a linear function of arclength f ,  and f in the 
interpolation (3.1) is non-trivial, since they differ, in general, even to leading order 
in L. Expanding (3.2a), for example, we have 

5=- Jf’ (f+ O(L)).  (3.3) 

Computationally, (3.1) is found to have a greater accuracy and more rapid conver- 
gence with segment length than linear basis functions based on f. 

Following standard procedures, (2.11) can now be discretized and evaluated at 
successive collocation points x,, j = 1,2 ,  . . . , J+ 1, to obtain a system of algebraic 
equations for the values of the unknowns ($, or q5,,), j = 1 , 2 , .  . . , J +  1. The quad- 
rature over each segment typically involves products of the ring source 0 or its 
derivative, the interpolation functions in (3 .1)  and the Jacobian ( 3 . 2 ~ )  so that the 
integration is with respect to the parameter f. When the collocation point is an end 
point of the segment being integrated, special care is required to account for the 
singularities of the kernel. For the logarithmic singularity of (7, the singular portions 
of the kernel up to and including gln(f) are subtracted out and integrated 
analytically. There is no Cauchy singularity in aa/an when the collocation point x 
is on the interior of the boundaries aB, C3F or a#,, where the slope is continuous. The 
kernel can be evaluated (except at x’ = XJ and the included angle is simply a = 2 ~ .  
At the intersections of aB and 37, and aF and as,, where the slopes are in general 
discontinuous, the integrand still exists at either side of x, although somewhat more 
care is required to evaluate the included angle. When the body (or free surface) 
intersects the centreline r = 0, the integral is evaluated readily in a spherical 
coordinate system, so that for an inverted cone of half vertex angle B,, for example, 
the angle a at the vertex is a = 2n(l +cosB,). The evaluation of all the regular 
integrals are performed using four-point Gaussian quaclratures, whose accuracies are 
confirmed against those obtained from convergent Romberg integrations. 

For a given matching radius A,  fixed (Eulerian) collocation points on as,, and 
prescribed time-steps, the evaluation of the functions in H need not be repeated for 
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different interior problems. For the impulsive part, the first two terms of (A 5 )  are 
evaluated and inverted once at the beginning of each problem. The singularities 
involved there are similar to those for G and will not be elaborated. The memory 
effects of H are evaluated via the last term of (A 8). A simple trapezoidal rule is used 
to perform the convolution integration, and the value q5r(7 = t )  at the upper limit 
does not appear from this term on account of (A 11). When z, z’ =t= 0, the integrand 
in the Fourier integral in (A 11) diminishes exponentially and Filon’s method is used 
for its evaluation. For z = z’ = 0, however, the integrand decreases only algebraically, 
and the convergence using Filon’s quadrature is accelerated by subtracting out 
analytically the leading contributions in terms of sine and cosine exponential 
integrals. 

3.2. Time integration and stability 
Once (2.11) is solved for (q5, q5,J on ah’, Vq5 can be evaluated on @, and the kinematic 
and dynamic boundary conditions (2.2) integrated in time. Provided that the desired 
accuracy is achieved, the specific time-integration formula used appears not to be 
critical and a variety of different schemes have been employed by previous investi- 
gators, typically using higher-order explicit (e.g. RungeKutta) or multi-step (e.g. 
Adam-Bashford-Moulton) methods or a combination of the two. In  our simulations, 
we adopt a modified fourth-order Runge-Kutta scheme wherein the unknowns 
associated with the potential (q5,q5,), but not the position of the boundary as, are 
updated in the intermediate steps. This is not unlike the approach used by Dold & 
Peregrine (1986) where, for a given free-surface boundary, the (complex) potentials 
and its time derivatives are solved via Cauchy’s integral theorem which are then 
combined in a higher-order time-integration formula. In the present case, compu- 
tation time is dominated by that required to calculate the coefficients of the matrices 
associated with (2.11) so that the modified scheme, which maintains the same matrix 
coefficients during one complete time-step, represents a substantial saving in effort 
but at a slightly decreased accuracy compared to exact Runge-Kutta integration. 
Furthermore, the extra complication of tracing Lagrangian points which cross the 
computation boundary during the intermediate steps is avoided. To obtain the 
gradient Vq5 = (q5,,#,) or (q5n,$8), the tangential derivatives q58 are calculated by 
second-order finite-difference formulas in terms of arclengths. At  the matching 
boundary, the position and potential value of the free-surface point on ah’, for the 
new time-step are obtained by Lagrangian extrapolation. 

Unless special care is taken, short-wavelength numerical instabilities, similar to 
those experienced by Longuet-Higgins & Cokelet (1976) and others for the two- 
dimensional problem, are also observed in our computations. The exact cause of these 
instabilities is uncertain although we believe that an important mechanism is the 
instability associated with concentration of Lagrangian points in regions of high flow 
gradients. If we perform a von Neumann stability analysis for the fourth-order 
Runge-Kutta scheme, for example, with linearized forms of the free-surface condi- 
tions (2.2), we obtain for stability the Courant condition 

8 Ax 
x g  

At2 < --, (3.4) 

where At is the time-step, and Ax the local grid spacing. This suggests that, for fixed 
At, such instabilities cannot be avoided for the nonlinear problem if the minimum 
grid size cannot be effectively controlled (i.e. (3.4) should at least be a necessary 
condition). Thus, we propose a scheme where a new set of equal-arclength spaced 
Lagrangian points on 87 are created after every time-step. Using this algorithm, the 
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earlier instabilities are completely removed and no smoothing is required. Such a 
regriding idea is not new and has been used in related work by Fink & Soh (1974), 
for example, to improve the accuracy of their principal-value integrals and extend 
the simulation time of their calculation of two-dimensional unsteady vortex sheets. 
The main disadvantage of regriding is the potential loss of resolution which is usually 
provided by more closely spaced Lagrangian points in areas of large gradients (and 
conversely, because equal-arclength segments are used, unnecessarily fine resolutions 
may also be introduced in regions of small gradients). The advantages of regriding 
over smoothing especially in the present context are, however, substantial: (i) 
regriding can potentially alter the energy of the system much less, especially in the 
limit of very small grid sizes ; (ii) the arbitrariness in the choice of a smoothing formula 
for a particular problem is avoided; (iii) smoothing cannot be easily applied at the 
intersection points between the free surface and body or matching boundaries; and 
(iv) the difficulties associated with the loss or gain of Lagrangian points as they cross 
the matching boundary are completely avoided if the free surface is regrided after 
every time-step. 

3.3. Numerical accuracy 
The overall accuracy of our numerical scheme can be considered in three parts : that 
associated with the solution of the field equation (2.11); that associated with the 
integration of the evolution equations (2.2); and that due to patching to the linear 
outer solution. Both the field-equation solver and the time-stepping procedure can 
be checked independently against known (prescribed) solutions. Our numerical 
experiments show that when forty segments are used per wavelength, the maximum 
relative error of the potential or its normal derivative on the boundary in (2.11) is 
less than 1 % in the interior and less than 4 % near the intersections of the free surface 
with the body or the matching boundary. The convergence with grid size is quadratic 
everywhere except at the intersection points where i t  is linear. Similarly, the modified 
fourth-order RungeKutta scheme has less than 1 yo maximum relative error in the 
surface normal velocity or elevation after ten wave periods when forty time-steps are 
used per period. Discretizations comparable with these are used in all our compu- 
tations. To assess the errors introduced by the matching boundary, our simulations 
are typically performed with two or more matching radii A, and convergence for 
results near the body is achieved to within several percent (e.g. see figure 8). 

In addition to the above checks for convergence with respect to temporal and 
spatial discretizations and matching radii, the global accuracy of our computations 
is also evaluated for conserved fluid volume and conserved energy: 

The first term is proportional to the power expended by the body B, the second term 
to the rate of change of kinetic and potential energy in the fluid volume 8, and the 
last term to the energy flux across the matching boundary 8,. The pressure p on the 
body can be evaluated using Bernoulli's equation 

where the second form is more ukful when following moving points (with velocity 
V) fixed on the body. For all the examples in $4, such quantities are typically 
conserved to within a few percent (e.g. see figure 9). 
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4. Numerical results 
To demonstrate the usefulness and accuracy of our numerical method for axi- 

symmetric problems involving free surfaces, we present results here for three different 
applications of interest. (i) Growth and collapse of an initially spherical cavity bubble 
near a free surface. For the non-buoyant case, excellent experimental data are 
available from Blake & Gibson (1981) which allow us to make a detailed comparison 
and validation of our code. It is found that the inclusion of gravity can have a 
profound effect on the evolution of the cavity. (ii) Large-amplitude periodic heaving 
motions of a floating vertical circular cylinder starting from rest. Our primary 
interests here are steady-state results for the reaction forces and flow field in the 
vicinity of the cylinder. Since a large number of periods must be simulated, especially 
for the latter, this is a particularly useful test of the effectiveness of the matching 
boundary. (iii) Forces and run-up on a heaving inverted cone. In  addition to 
engineering applications such as the use of these devices as wavemakers, this problem 
also provides a demonstration that our treatment at the body and free-surface 
intersection line is satisfactory. 

4.1. Dynamics of a cavity bubble near a free surface 
We study the growth and collapse of a vapour cavity near an initially plane free 
surface under the assumptions of potential flow, negligible surface tension, vertical 
axisymmetry , and uniform and constant (in time) cavity-vapour pressure. The last 
assumption is made for simplicity and is not critical to our simulation. Physically, 
these assumptions are valid for cavities that are not too small (to ignore viscosity 
and surface tension), and for small liquid and vapour Mach numbers (to neglect 
compressibility effects and to assume constant cavity pressure), i.e. the fluid 
mechanics and thermodynamics of the vapour in the cavity are ignored. On the other 
hand, the assumption of axisymmetry may be unrealistic if the maximum volume 
of the bubble is greater than a few c.c., beyond which there may be considerable 
circumferential variations in the bubble shape and motion. The relevant parameters 
for this problem are 7 = R,/h and y = (gRm)i/U, where Rm is the maximum radius 
the bubble will attain if the fluid is unbounded, h the initial depth of the centroid 
of the bubble, u2 = Ap/p ,  and Ap = pa-p, ,  the (constant) difference between the 
atmospheric and cavity-vapour pressures. All velocities and lengths are scaled by U 
and R, respectively. To begin the simulation, a spherical bubble of small initial radius 
Ro h is used, whose velocity of expansion A, is given by (Rayleigh 1917) 

In our simulations, Ro/Rm =0.25 is used, which corresponds to a time 
to = 0.0154Rm/U measured from an instant when the bubble has negligible volume. 
Because of the short timescales involved, matching radiation boundaries are not 
necessary for these calculations and the simulations are conducted with rigid 
boundaries at r = A = 4R, and z = - h = - 5Rm. Furthermore, to follow the large 
accelerations which are typical during the collapse phases, the time-step sizes are 
dynamically controlled so that the displacement of any particle on the surface does 
not exceed a fraction (typically 10 yo) of the segment length. 

For the non-buoyant case, y = 0, detailed observations were made by Blake & 
Gibson (1981) who took 11000 frames/s cine pictures of the bubble under free-fall 
conditions. Figure 1 shows comparisons between the experiments (reproduced 
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Expansion phase 

computations experiments 

Collapse phase 

computations experiments 

I I 

FIQIJRE 1.  Comparison of profiles between measurements (Blake & Gibson 1981) and computations 
for the growth and collapse of a cavity bubble beneath a free surface (y = 0 (no gravity) and 
9 = 1.02) for different time instants. ---, initial free-surface position; +, initial centroid of the 
bubble. 

directly from Blake & Gibson, figure 8) and our computations for the bubble profiles 
in the expansion and collapse phases for '1 = 1.02, and dimensionless times 
t, U/R, = 0.087, 0.173, 0.260, 0.347, 0.520, 0.604, 0.867, 1.040, 1.214, 1.300, 1.387, 
1.474, 1.508; for the labels k = 1,2,  . . . , 13. The collapse phase is marked by a rapid 
involution of the bubble in the form of a downward jet accompanied by a continually 
rising free surface which develops into a jet in the opposite direction. The corre- 
spondence between the experiments and calculations is satisfactory up to the last 
reported frame when the imploding jet is close to the bottom of the bubble. Our 
simulation, in fact, continues on to the time when the jet meets the far side of the 
bubble. These comparisons are substantially better both in terms of accuracy and 
duration of simulation than those of Blake & Gibson (1981) and Blake, Taib & 
Doherty (1985) using similar methods. (For example, computations for the same case 
in the former stopped after t = t, = 1.214Rm/U, and in the latter at  
t = t,, = 1.3Rm/U with considerable distortions of the profile.) To obtain some 
understanding of the underlying dynamics, the centreline fluid velocity and total 
pressure are presented in figures 2 and 3 respectively for time instants corresponding 
to k = 6,9,11,12,13. (In this and later results, the velocity in the fluid is obtained 
directly in terms of q5 and q5n on the boundary from taking the gradient of Green's 
identity.) Note the large negative (downward) velocities of the jet above and a small 
distance away from the bubble. The magnitude, which increases with time, is close 
to 4 U  at k = 13, tU/Rm = 1.508. For Ap - 1 atmosphere and p = density of water, 
this is approximately 40 m/s, a value which is somewhat smaller than, but of the same 
magnitude as, observed maximum velocities of bubble jets collapsing near a solid 
boundary (Plesset & Chapman 1971). The velocity below the bubble is relatively small 
but positive, indicating a rising of the bottom as the cavity collapses. Throughout 
the collapse phase, the total fluid pressure (figure 3) has a maximum value above the 
bubble which explains the directions of the free-surface and bubble-implosion jets. 
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RGIJRE 2. Centreline (vertical) fluia velocity near a cavity bubble collapsing beneath a free surface 
(y  = 0 (no gravity) and 1 = 1.02) for different time instants. Note that the curves are discontinued 
inside the bubble and above the free surface. 
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FIGURE 3. Centreline fluid pressure near a cavity bubble collapsing beneath a free surface ( y  = 0 
(no gravity) and 1 = 1.02) for different time instants. The pressure coefficient inside the bubble 
(- 1) and above the free surface (0) are not plotted. 
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FIGURE 4. Profiles showing the growth and collapse of a vapour bubble beneath a free surface (y = 1 
(gravity present) and 7 = 1) for different time instants. Note that the crosses mark the initial free 
surface and bubble centroid locations. 

At the last time instant plotted, the pressure reaches a maximum value of 
(p-pa)/Ap - 4, which can be quite significant for small p,. 

When gravity is present, the evolution of the bubble can be changed dramatically 
(Blake et al .  1985). This is shown in figures 4-6 for the case 7 = y = 1 (the definition 
is now Ap = pa +pgh-pv, and in fact pa = p, in this case). Figure 4 shows the profiles 
of the cavity at dimensionless times t ,  U/R, = 0.134, 0.215, 0.311, 0.412, 0.521, 
0.641, 0.777, 0.939, 1.148, 1.516, 1.716, 1.896; for the plots k = 1,2, ..., 12. Because 
of the presence of buoyancy, the bubble (centroid) continues to rise through the 
growth and collapse phases eventually becoming entrained under an elevated free 
surface. The bubble collapse is now accompanied by the involution of its bottom 
surface into a jet which is directed upwards towards the free surface. At the last stages 
of our simulation, in fact, all three free surfaces are almost in contact with each other. 
In the centreline velocity plots, figure 5, the maximum velocities are associated with 
the upward jet but have magnitudes only about half of those in the non-buoyant case. 
The total centreline pressures (figure 6), which are dominated by hydrostatics at large 
depth, vary smoothly to the prescribed value p ,  at the bubble, and also between the 
bubble and the free surface (pa = pv), in contrast to the profiles in figure 3. 
Furthermore, the maximum pressure is clearly no longer above the cavity, so that 
the implosion jet is directed from the bottom of the bubble upwards. 

Provided that axisymmetry is maintained, it is seen that the present method is 
well suited to the study of the dynamics of cavity bubbles and their inferactions with 
a free surface. The latter, in particular, may have useful applications, for example, 
to the generation of sub-sea acoustic signals using bubbles, and to the understanding 
of spray formation by entrained air. 



208 D. G. Dommermuth and D.  K .  P. Yue 

- 1.0 0 1 .o 2.0 3.0 

V I  u 
FIGURE 5. Centreline (vertical) fluid velocity near a cavity bubble beneath a free surface (y = 1 
(gravity present) and 7 = 1) for different time instants. Note that the curves are discontinued inside 
the bubble and above the free surface. 
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FIGURE 6. Centreline fluid pressure near a cavity bubble beneath a free surface (y = 1 (gravity 
present) and 7 = 1) for different time instants. The pressure coefficients inside the bubble and above 
the free surface (both equal to - 1) are not plotted. 
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4.2. Forced heaving of a floating circular cylinder starting from? rest 
We consider large-amplitude forced periodic heaving motions of a floating vertical 
circular cylinder of radius R,, initial draught H, in water depth h, where H/R, = 0.5 
and h/R, = 1. The vertical velocity of the cylinder is prescribed by 

t < 0, 
-wa coswt, t 2 0, 

U(t)  = 

where the excitation frequency w = ~ R / T  is chosen to correspond to an Airy 
wavelength of 2R,, i.e. 

w2h 

B 
- = R tanhn. (4.3) 

Three different (half) stroke amplitudes a/H = 0.125,0.25 and 0.5 are considered. In  
the simulation for the largest amplitude a/H = 0.5 case, the cylinder is found to be 
already very close to aerating at the top of the stroke. When a matching radius of 
A = lOR, (i.e. 5 Airy wavelengths) is used, simulations have been carried out to 
beyond 12 wave periods. Uniform grid spacings are used on the free surface and 
matching boundary, while a cosine distribution of segment lengths is used on the 
cylinder in anticipation of the singular flow at the corner (see Newman 1985). In  this 
case, we use a total of N = 237 unknowns (36, 180 and 20 segments on aB, @’ and 
&So respectively), and the solution time, which is roughly proportional to Na, is of 
the order of 15 s per time-step on the Cray 2, or approximately 10 min per motion 
period. 

Figure 7 shows time histories of the vertical force f(t) on the cylinder calculated 
by three different methods for a/H = 0.5. Note that steady state for the force is 
reached within one or two periods. A relatively good estimate of the force can be 
obtained by considering only the impulsive force fI associated with the instantaneous 
submerged portion of the body, B(t), below the still-water level. From momentum 
balance, we have 

’ 

where $(t) is the potential corresponding to the linear impulse (infinite-frequency) 
problem for B(t) satisfying $ = 0 on z = 0, r > R,, and +,, = U(t)n, on B(t). This is 
also computed and plotted in figure 7 for the a / H  = 0.5 case. The rather close 
agreement indicates that the reaction force is dominated by added-mass effects as 
may be suggested by the rapid approach to steady state. In  contrast, the linear 
time-domain result (obtained by keeping the free surface at z = 0 and ignoring 
nonlinear terms in our nonlinear code) shows fairly large discrepancies especially at 
the troughs. The difference between fI and the nonlinear force represents radiated 
wave effects which show distinct higher-harmonic contributions. To see this, we 
perform harmonic analysis on the steady-state portion of the force, and define Fourier 
force coefficients 
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F’IQUBE 7. Time history of the vertical force on a floating cylinder for a /H  = 0.5. - , nonlinear 
force history; ----, impulsive force historyf,(t) (equation 4.4) ; and ---, linear force history. 

f: v:t If:l v:l 
Nonlinear computations 

a /H  = 0.5 -0.45 2.19 1.3 0.6 
a/H = 0.25 -0.42 2.14 1.2 0.6 
a /H  = 0.125 -0.40 2.11 1.2 0.7 

Linear frequency-domain results -0.31 2.118 - - 

TABLE 1. Harmonic force coefficients for the forced heaving of a floating cylinder 

These are presented in table 1 where the hydrostatic force has been subtracted from 
f;. Note that for the a / H  = 0.5 case, the magnitudes of the mean, second and third 
harmonic forces are up to 11 % ,28 % and 7 % respectively of the first harmonic force. 
For comparison, we also calculate the mean and first-order force coefficients from a 
linear frequency-domain semi-analytic method which uses matched eigenfunction 
expansions outside and underneath the cylinder (e.g. Garrett 1971). Because of the 
scaling with respect to stroke amplitude in (4.5), the coefficients show only small 
deviations with decreasing strokes and approach the linear value for the first- 
harmonic force. The comparison with the frequency-domain mean force is not as close 
and is partly due to the difficulty in integrating the pressure near the corner. For 
s = (Ro-r)/Ro 4 1, 9, - sf, and p - 9: - sj; so that even for the linear calcula- 
tion, the eigenfunction amplitudes theoretically have only a - Q power convergence. 

For the flow field around the cylinder, the convergence to steady state is much 
slower than the forces acting on the cylinder. Figure 8 plots the instantaneous 
free-surface positions q ( r , t )  at specific instants t/T = 4,6,8 and 10 for the case 
a / H  = 0.5. Note that the matching boundary is located at A/R,  = 10. The absence 
of reflections from that boundary is evidenced by the fact that the correspondence 
among the profiles, which indicates their approach to steady state, improves with 
increasing radius and time. (The slight irregularity near r/R,  = 1 is numerical and 
is due to the cylinder nearly aerating at the top of its stroke.) To give an illustration 
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FIQURE 8. Instantaneous free-surface profiles outside a heaving vertical cylinder for alH = 0.5 at 
different time instants t/T = 4, 8, 10, for a matching radius AIR, = 10 (- ). Surface profile 
at t /T = 4 for a matching radius AIR, = 5 (----). 

of the convergence with matching radius A, the free-surface profile at t/T = 4 
obtained using a much smaller computational domain A/R,  = 5 is also shown. The 
use of the larger matching radius is clearly conservative. Figure 9 shows the 
conservation of energy for 12 periods of simulation for a/H = 0.5. We plot the 
left-hand side of (3.5), which represents the power input by the body, as well as ten 
times the difference between that and the rate of energy increase in the computational 
domain plus energy flux out of the matching boundary. This difference is less than 
2 % of the power for most of the range. The small jump near t = (n+ 1/4)T, 
n = 0,1,2, . . . , occurs at  the bottom of the stroke where the clearance is only iR,. The 
added mass there is strongly affected by the bottom and the jump reflects the steep 
gradient of the added mass with small clearance. 

The steady-state mean set-down associated with the nonlinear radiated waves is 
of some interest, and harmonic analyses of the steady-state surface profile histories 
are performed to obtain the coefficients q:(r), R, < r < A, defined by 

(4.6) 

q(r,t')dt' = q:(r)H 

q(r ,  t ' )  e-Inwt'dt' = q:(r) H ( ; y ( y i 2  - (n = 1,2,. . .). S+* and 
T o t  

The forms of (4.6) are suggested by the asymptotic behaviour of the surface elevation 
72, based on first-order (frequency-domain) results assuming steady state. Thus, for 
a radiated wave of wavenumber k (satisfying u2 = gk tanh (kh)), we have (e.g. Mei 
1983) MY1 - c (kr B 1) \ 

(kr B 1). I and the mean set-down, 
Ic12kH 

"" 2 sinh2kh 

(4.7) 

The amplitude coefficient c is a complex constant from linear frequency-domain 
analysis. Using the value of c from our semi-analytic linear calculations, the harmonic 
amplitudes q: obtained from nonlinear simulations can be compared to the linear 
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FIGURE 9. Numerical check of conservation of energy for a heaving circular cylinder, a / H  = 0.5, 
equation (3.5). - , the power $expended by the body; ----, ten times the difference between 
h? and the rate of energy increase in the fluid plus energy flux out of So (left- and right-hand sides 
of (3.5). Note that the energy is conserved to within 2 yo relative error for most of the 12 periods 
of motion. 

asymptotics (4.7). This is shown in figure 10 for the first-harmonic and mean set-down. 
The comparison for 7: is quite satisfactory, reaching constant asymptotes whose 
values approach the linear estimate as stroke amplitude is decreased. The growing 
oscillations with radial distance give indications that steady state is not fully reached 
at the larger distances, while the oscillations themselves may be related to those 
behind an advancing wave front (e.g. Longuet-Higgins 1974). The result for 7: (figure 
l o b )  is not as reasonable, with the nonlinear mean set-down remaining almost 
constant with increasing r. Although the magnitudes involved are quite small, this 
does indicate that the matching boundary does not adequately account for the mean 
second-order volume fluxes crossing it - a conclusion not completely surprising in 
view of the assumptions implicit in the matching conditions (2.11). 

Finally, we show results for the fluid velocities near the body. Figure 11 is a vector 
plot of the steady-state time-averaged horizontal velocities in the fluid for a/H = 0.5. 
Near the surface, there is a mean outgoing Stokes’ drift velocity compensated by a 
weaker return current which has an almost constant amplitude through the remaining 
water depth. A careful analysis of the magnitudes reveal that the mean velocities 
decrease with radial distance roughly as 1/r and quadratically with decreasing stroke 
amplitudes as expected. 

4.3. Forced heaving motion of a jloating inverted cone starting from rest 

To test the validity of our treatment of the body and free-surface intersection line 
when the wall of the heaving body is not vertical, we consider the periodic forced 
motions of an inverted cone, initial waterplane radius R,, draught H = 2R,, and water 
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FIGURE 10. Surface elevation outside a heaving vertical cylinder for different stroke amplitudes. 

, nonlinear results; ---- , constant asymptotes predicted by linear theory (equation 4.7) 
for (a) first-harmonic coefficient amplitude; (b)  mean set-down coefficient. 

depth h = 2H. We keep the same forcing velocity and frequency (4.2) and (4.3), and 
half-stroke amplitudes a/H = 0.05, 0.1 and 0.2 are considered. When larger 
amplitudes are used for this cone angle and frequency, a thin jet of fluid is observed 
to rise sharply up the side of the body, and the simulations cannot be continued much 
further. The matching boundary is placed at A = 20R0 = 5h and uniform segment 
lengths are used throughout. 

Our primary interests here are the forces and run-up on the cone which reaches 
steady state rapidly and computations beyond four periods are found not to be 
necessary for our analyses. The reaction-force coefficients as defined earlier are given 
in table 2. (Note that the hydrostatic component is now included in the coefficients.) 
The linear frequency-domain results for comparison are now obtained using an 
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FIGURE 11. Mean horizontal velocities outside a heaving vertical cylinder for a/H = 0.5. The 

velocities continue almost constant to the bottom at z /R,  = - 1. 

f: V:l V:l V:l 
Nonlinear computations 

a/H = 0.2 0.43 0.8270 0.24 0.072 
a /H  = 0.1 0.44 0.8242 0.25 0.073 
a /H  = 0.05 0.44 0.8238 0.25 - 

Linear frequency-domain results 0.441 0.8237 - - 

TABLE 2. Harmonic force coefficients for the forced heaving of an inverted cone 

axisymmetric hybrid element method (Yue, Chen & Mei 1978). As the motion 
amplitudes decrease, the coefficients compare well with linear predictions for both 
the mean and first-harmonic force, and there are no difficulties with large potential 
gradients. (For the third-harmonic coefficient, the force for the smallest stroke is 
insignificant and therefore not reliable.) 

The behaviour at the contact point is very smooth, and figure 12 plots its position, 
(re, zc), as a function of time after steady state is reached for T < t < 4T for 
a/H = 0.2. Note the rapid approach to steady state indicated by the closed contour. 
The skewed shape of the particle orbit is due to the presence of nonlinearity. In 
general, if the vertical displacement of the cone is S(t)  and the elevation of the free 
surface on the body is q(rc, t ) ,  then we have simply z, = q and rc -R, = (R,/H) (q  - 6).  
Now for the linear harmonic problem, if the forcing motion c( t )  is sinusoidal, 
q(rC, t )  x q@,, t )  will also be sinusoidal with a particular magnitude and phase with 
respect to 6. In  this case, then, (r,, z,) describes the locus of an ellipse inclined at an 
angle to the vertical plane. Such a curve using the magnitude and phase values from 
our linear-theory calculation is also shown in figure 12. The difference between the 
linear and nonlinear predictions is quite significant. 
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FIQURE 12. Steady-state locus of the intersection point between the free-surface and the surface 
of a heaving cone for alH = 0.2. - , nonlinear results; ---- , particle orbit predicted from 
linear theory. Note that three periods of motion (T d t g 4T) are plotted from the nonlinear 
simulation. 
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5. Conclusion 
A numerical method which extends the mixed Eulerian-Lagrangian approach to 

nonlinear axisymmetric body (or bubble) and wave interaction problems has been 
presented. For illustration, three problems involving nonlinear free-surface effects 
have been studied in some detail to bring out the important physical features and 
to demonstrate the effectiveness and accuracy of the method. In  particular, novel 
ideas in the implementation of a linear far-field matching boundary, in the treatment 
of the free-surface and body intersection line, and in a regriding algorithm to suppress 
the instabilities have been tested and validated. 

Our eventual objective is to develop accurate (quantitative) computational models 
for fully three-dimensional nonlinear body-free-surface interactions such as those 
associated with offshore structures in steep waves, large-amplitude ship motions, 
bow and stern flows, and nonlinear ship waves and wave resistance. To accomplish 
this, a number of important issues must be addressed: 

(i) Treatment of the nonlinear free surface. The semi-Lagrangian method has been 
shown to be remarkably successful, in both two-dimensional and axisymmetric flows, 
especially in predicting highly nonlinear phenomena such as wave breaking and jets. 
The idea is directly applicable to three-dimensional flow, although refinements in the 
field-equation solver to achieve the necessary stability, accuracy and efficiency may 
be important. 

(ii) The body and free-surface intersection line. Difficulties associated with the 
intersection points have been practically resolved by the method of Lin et al. (1984) 
in two dimensions in the context of complex-potential formulation, and extended to 
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axisymmetric flows using Green’s identity in the present work. Further generalization 
to fully three-dimensional problems can be anticipated without special difficulties. 

(iii) Far-field closure of the computational domain. The successful implementation 
of a far-field matching boundary has made feasible the long-time simulation of 
body-generated waves. For three-dimensional problems, the more general formula- 
tion (see Appendix) is still applicable. Algorithms for the efficient evaluation of the 
(linear) transient wave-source potential will be valuable. 

(iv) Efficient solution of the field equation. The present formulation of the mixed 
boundary-value problem as a Fredholm integral equation of the first kind has 
required direct solutions of the resulting algebraic system. To discretize the 
computational boundary of realistic fully three-dimensional problems, N = O( lo4) 
unknowns can be anticipated - a prohibitive number for direct solution even on 
modern supercomputers. Our experiences towards formulating the mixed problem 
entirely as second-kind Fredholm integral equations (Burton & Miller 1971 ; Baker 
et al. 1982), for which iterative solution procedures are applicable, have not been 
completely successful. This is partly due to difficulties associated with proper 
treatment of the intersection of the free surface with the body and the matching 
boundary. The development of an efficient iterative solution to the field equations 
in an irregular domain, perhaps even by non-boundary-integral methods, is of critical 
importance. 

(v) Stability of the time integration. The regriding idea is very satisfactory at  
removing short-wavelength instabilities and should be directly extendable to three- 
dimensional problems (say with a two-dimensional spline of the surface). The exact 
mechanism of the instabilities is, however, still not well understood. A more 
fundamental treatment of this problem would be very desirable. 

(vi) Implementation of a nonlinear incident wave for the diffraction problem. The 
difficulty here is to achieve this in a way consistent with a linear matching in the 
far field. Several promising ideas can be pursued: (a) generate steep incident waves 
in the interior through directional and/or frequency focusing of linear waves imposed 
on the matching circumference ; (b) prescribe as initial conditions large-amplitude 
localized disturbances inside the computational domain ; (c) introduce a wavemaker 
(for example a pressure patch or heaving cone) in the interior of the domain. However, 
since a good wavemaker will necessarily also be an efficient scatterer, simulation time 
will again be limited by the proximity of the wavemaker and thus the size of the 
computational region - a situation, ironically, not unlike what one may encounter 
in a physical wave tank. 

Although a complete solution to these problems is still some time away, this work 
addresses many of the important issues and takes a useful step towards the simulation 
of realistic nonlinear free-surface and body interactions. 
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Appendix. Solution of the linear outer problem 
The requisite relationships (2.9) for the linear outer potential can be obtained by 

applying Green’s theorem in the region r > A, - h < z < 0 and using the boundary 
conditions (2.8) to give 

where GR, GF are respectively the impulsive (Rankine) and memory (free-surface) 
parts of the transient Green function source given by (Wehausen & Laitone 1960) 

GR(x,y, Z ;  z’,Y’,z’) = Jo(k[(x-d)2+ (y-y’)’?) 

cash k(z + h) cosh k(z’ + h) e-kh 
cosh kh 

cosh k(z + h) cosh k(z’ + h) 
sinh kh cosh kh 

GF(x,y,z; x‘,y‘,z‘; t) = 2 

x {l-cos([gk tanhkh]tt)}Jo(k[(x-x’)2+(y-y’)2]t). (A 3) 

In (A 2), R; = ( x - ~ ’ ) ~ + ( y - y ’ ) ~ + ( z + z ’ + 2 h ) ~  and Rt = ( ~ - x ’ ) ~ + ( y - y ’ ) ~ + ( ~ + z ’ ) ~  
are associated respectively with Rankine source singularities at image points about 
the bottom and free surface. 

When the flow is vertically axisymmetric, the integrals over 8’ in (A 1) can be 
performed analytically. Using (2.7) and the identity (Watson 1952) 

JoaKJo(k[(r’ cos 8’ - r)2 + rt2 sin2 el]+) d8’ = 2nJ0( kr) J,(kr’) (A 4) 
we have 

with the ‘ring’ transient Green functions given by 

GR(r,z; r’,z’) = G ( r , z ;  r ’ , z ’ )+G(r , z ;  r’, -2’-2h)-G(r,z; r’, -2’)  
- 

J,(kr)J,(kr‘), (A 6) 
coshk(z+h) coshk(z’+h) e-kh 

cosh kh 
- 2xr Jorn dk (2 

- Jorn cosh k(z+h) cosh k(z‘+ h) 
GF(T, Z ;  r’, z’, t - 7 )  = 41tr dk 

sinh kh cosh kh 

x (1 -cos[(gk tanh kh)f(t-7)]}Jo(kr)Jo(kr’). (A 7) 
Computationally, the integral in (A 6) converges rapidly with k because the Rankine 
singularities are subtracted out. The quadrature in (A 7), however, requires special 
care because of the oscillatory nature of both the cosine and Bessel functions. Note 
that (A 5) is not explicitly in the form of (2.9) because of the appearance of &(t) under 
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the - first integral. (J f ( t )  does not come from the convolution integral since 
G F ( x ,  x’ ; 0) = 0 as required). Numerically, one simply inverts the kernel associated 
with $(t )  after discretization to obtain H explicitly. Since 38, is fixed, that kernel is 
a function only of h and A (and the discretization of 38,) and the inversion needs 
to be performed once only for a given simulation. 

Alternatively, one can seek an equation of the form (2.9) directly. For any 
linearized axisymmetric wavefield, $ and 4,. on a fixed vertical cylinder of radius A 
can, in general, be related by an equation of the form (Lin et al. 1984) : 

D. G.  Dmmermuth and D. K .  P .  Yue 

where D ,  represents the impulsive contributions, and DF the free-surface memory 
effects of the ‘Green function’, D(r, 2, t ; r’ ,  z’, 7 )  which satisfies the linearized exterior 
problem (2.8) with the condition 

- & ( Z - Z ’ ) & ( t - 7 ) ,  r =  A ,  - h  < Z,Z’ < 0. (A 9) 
ilD 
ar 
-- 

The result is similar to that of Lin et al. (1984) for infinite depth and is simplified 
when values on r = A only are required. The final forms are 

and 
sin [ (gk  tanh k h ) t ( t - ~ ) ]  

(gk tanh kh)i 
&(z, z’, t -7 )  = -49 jOm dk 

A2 

. ( A l l )  
(1 + tanh kh) cosh L(Z  + h) cosh k(z’ + h) ePkh 

(kA) ( q ( k A )  + q ( k A ) )  cosh kh 
X 

As expected, D ,  is logarithmically singular as z+z’, while at 7 = t ,  we have 

Comparing the earlier Green’s theorem formulas (A 5 ) ,  (A 6), (A 7) to the present 
results (A 8), (A lo), (A l l ) ,  we note that the former can be more readily generalized 
to three-dimensional problems although (A 11) for DF is in a more efficient form for 
quadrature than (A 7) for 8,. Both results are equally valid, and since portions of 
the Rankine kernel (A 6) are almost identical with that already required for the 
interior problem, we use (A 6) for the impulsive part, and (A 11) for the free-surface 
memory part of H in (2.9) for our computations. 

DF(z, %’, 0) = 0. 
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